If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-384x+620=0
a = 1; b = -384; c = +620;
Δ = b2-4ac
Δ = -3842-4·1·620
Δ = 144976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{144976}=\sqrt{16*9061}=\sqrt{16}*\sqrt{9061}=4\sqrt{9061}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-384)-4\sqrt{9061}}{2*1}=\frac{384-4\sqrt{9061}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-384)+4\sqrt{9061}}{2*1}=\frac{384+4\sqrt{9061}}{2} $
| 19v+3=203-v | | 20+7t=76 | | 2^k=4100000 | | u/4+12=16 | | m-12=-40 | | 42.45=h•6.5= | | 6k+13=17k-31 | | k+5=114 | | 14x^2+7x-385=0 | | 2/x+7+5/x-3=4/5 | | À=(2x+7)(3x+6) | | 3/8z=-10 | | 14r-15=7r-1 | | -40+7m=3(6m+5) | | 22-4n=10 | | 20x+2=16x+10 | | 2x/3=1.2 | | 1/2(4x-2)=3/10(20x-10) | | 0.02x+0.04=0.18-0.05x | | 8p-5=10p-9 | | 25=(x-4)2 | | K=45+2k | | q/8-56=62 | | 0.02x+0.04=0.18-0.5x | | 5n+18=3n+6 | | 2x²+9x-26=0 | | -10+4(3p+1)=18 | | 7x+11=6x+7 | | w/7+-27=-37 | | 2w²+9w-25=0 | | -47=5(r-86)-87 | | 3(2g−11)=15 |